
by fluid) bubbles rising toward the surface, we now have a more integrated structure consist- 
ing of bubbles and intervening fluid. The upward velocity of this chain is greater than the 
upward velocity of the individual bubbles and is determined by the buoyancy of the bubbles 
comprising the chain. The fluid entrained by the bubbles is displaced upward as such chains 
move toward the surface. 

Calculations performed for another limiting case (surfacing of chains of bubbles in 
channels whose radius is comparable to a (4 = 0.8) showed that their upward velocity and the 
flow pattern are the same as in the surfacing of a single bubble if the distance between bub- 
bles is greater than the diameter of the channel. This conclusion is fully in accord with 
the calculations in [3], where it was found that the velocity profile for the cross section 
of the tube smooths out at a distance of just 1.5 tube diameters from the bubble. 

8. 

9. 
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STABILITY OF AN ADIABATIC CONTINUOUS CHEMICAL REACTOR 

T. A. Bodnar ~ UDC 532.72 

Numerical studies (see [1-3], for example) have shown that there can be many steady- 
state regimes of operation of chemical reactors with distributed parameters. At the same 
time, as was demonstrated by N. N. Moiseev et al. in a postscript to [4], numerical methods 
cease to work for such systems in the neighborhood of bifurcation poinLs - where the solution 
loses its uniqueness. Formidable obstacles are encountered in attempts to develop numerical 
methods of post-bifurcation analysis that make it possible to find all of the solutions ema- 
nating from bifurcation points. These obstacles are particularly great in the case of multi- 
dimensional problems or problems with many factors, such as in numerical studies of chemical 
reactors with distributed parameters. 

In the present investigation, we use the theory in [4] to develop a method of analyzing 
the stability of steady-state solutions of a system of partial differential equations which 
describes the operation of a continuous chemical reactor with an adiabatic temperature change. 
The method is based on reduction of the number of dimensions of an infinite-dimensional prob- 
lem through the use of projections of its solutions on an eigenfunction space and the Fredholm 

Biisk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 91-97, May-June, 1991. Original article submitted December Ii, 1989. 

0021-8944/91/3203-0383512.50 �9 1991 Plenum Publishing Corporation 383 



alternative. The method is used to find zeroth, bifurcative, and isolated (eliminating the 
bifurcation) solutions and to determine their stability. The analysis of the stability of 
solutions obtained in a space of the dimensionality R 2 is based on the Liapunov theorem and 
the Hopf hypothesis on theequivalence of strict loss of stability and a double bifurcation 
point [5]. 

It is assumed that the rate of heat release in the reactor is a continuous function ~(c, 
T) of the temperature and concentrations of the reactants. It is further assumed that ~(c, 
T)/ST > 0. This assumption is valid for any reactions characterized by an Arrhenius rate of 
heat release. 

i. Formulation of the Problem. The mathematical description of the process which takes 
place in a continuous chemical reactor has the form [6] 

OT (x, t) 02T (x, t) c3T (x, t) Oz (c, T); ( l_ 1 )  
ot •  w ~  + - - ( ~  dx 2 ~ cp 

0 2 (x, t) Oc (x, t) Oc (x, t) D c 
w - -  z$(c ,  T), ( 1 . 2 )  dt dx 2 dx 

where x is a coordinate; t is time; T is temperature; K is diffusivity; c is concentration; 
Q is the heat of reaction referred to a unit mass; z is the preexponential multiplier; E is 
the activation energy; Cp is the heat capacity; R is the universal gas constant; w is the 

flow velocity; D is the diffusion coefficient; g(c, T) is a continuous function of the con- 
centrations and temperature. Without loss of generality, we assume that a reaction of the 
Langmuir-Hinshelwood type with an Arrhenius rate of heat release takes place in the reactor: 

(;(c, T ) =  k ' cexp ( - -  E ( R r ) - l ) '  

(~ ~ ~..~0 ~ ( 1 . 3 )  

(kl and k 2 are constants). 

We use the following relations as the initial and boundary conditions 

OT(O, t)/ax =--cz(r(O, t ) -  To), ~c(O, t) ax =--~(c(O t ) -  co), 

~T(L, t)/ax = ~c(L, t),'~x = O; 

T(x, O)= To, c(:c, O)= co 

( ] . .4 )  

( 1 . 5 )  

(~ and ac are constants and L is the length of the reactor). The condition of adiabaticity 
gives the below relationship between temperature and concentration: 

r ( x ,  t ) =  T o + Qc~ l (Co- -C(X ,  t)). ( 1 . 6 )  

After we change over to dimensionless parameters 

O - = E ( T - - T o )  B-1To-2,  z=ttj 1, 1 1 = x x ~  I 

u = w t . x j  1, 6 = L x j  1, [3 = R T o E  -1,  % = cxx~ 

ta -~ "~ 1 %Rir-o(EQz )- e x p  (E (RTo) - I ) ,  xa = (•162 

we introduce the operators 

oo ~"o oo ~ b,~ '~ F (0, ~t); 
n=l 

O0 __0"0 O@ OF (O, O) 0 ' t , . ~  02P (O' O) O; 
0-7 = dq a - -  u ~ "Jr- b tO  - -  O0 =- ' O~t O0 

o o  

~0 OF (0, O) @ _~ ~t O"F (0,0____~). 0 -t- b o -r  bnO n = G (it, O, b0), 
dz oO ag O0 n>~2 

(1.7) 

(1.8) 

(1.9) 
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where ~ is a parameter from an interval containing zero; 

~ (o)  = 

l O n 0=o; 

k, (c o --  cp (0E) - i  RTgO) exp(O (l @ ~gO) - i )  

(l ,k 2 (% - ~,> ~QE>-' Rr~o))  ' 

Conditions (1.4) a n d  (1.5), written in dimensionless form, are valid for each of the oper- 
ators (1.7)-(1.9). 

Thus, nonlinear operator (1.9) is system (I.i), (1.2) written in dimensionless parameters 
with allowance for (1.6). Here, the nonlinear function 9 (G) is represented in the form of a 
series in powers of 0. Thus, the above-formulated problem reduces to determination of steady- 
state solutions of the given operator with conditions (3..4), (]..5) and subsequent analysis 
of their stability. Operators (1.7), (1.8) are obtained from (1.9) by successive elimination 
of the defect b o (b0 = 0) and linearization. 

2. Zero Solution. Analysis of the stability of the zero solution of system (1.i)-(i.6) 
reduces to the problem of determining the eigenvalues of operator (1.8) with conditions (1.4), 
(1.5). The spectrum of the operator (1.8) on the interval (0, 6) consists only of discrete 
eigenvalues o n = b i - u2/4 - %n 2 , where I n (n = i, 2 .... ) are positive roots of the equation 

l g  >,8 = - -  ~ " ) '  ( 2 .  ].) 
4>.: -r- ue. 2- 2z~i " 

The zero solution is stable if the maximum value Oma x = o i < 0. The quantity o i will 
henceforth be identified with the parameter ~, and the boundary of stability of the zero so- 
lution will be determined from the equation 

[ t = b  i - u ~  ~ - - ) , i = O .  ( 2 . 2 )  

Simultaneous solution of (2.1), (2.2) gives the relation for the critical value of ~: 

25 i j -  u~ 1 6 ] /4_6 t_  . -  a rc lg  @ an . 

Here, a = 0 at ~i/4bi - u2(2bi + uai) -i < 0; a = 1 at ~i/4bi - u s (2b i + u~i) -i ~ 0. 

All of the eigenvalues o n of operator (1.8) are double eigenvalues, and each corre- 
sponds to two eigenvectors: 

Yi,~ ~ cos ~.~11 exp (O,Su~]), ~2~, = --(O,Su q- ~i) sin %,~1 exp (0,Su~]). 

The vectors Yii, Y2j (i, j = i, 2 .... ) are independent and form a complete system on (0, 6). 

Thus, (1.7) and (1.9) can be regarded as certain evolutionary problems in the space R ~ formed 
by these vectors. 

3. Bifurcative Solution. To solve (1.7) with conditions (1.4), (1.5), we introduce 
transforms which reduce the system of vectors Yij (i = i, 2, j = i, 2, ...) to a biorthogonal 

system of vectors Yij with the weight exp (-un). Thus, the eigenvalue o i will correspond to 

the vectors Yii = Yii, Y2i = Y2i - <Y2i Yiiexp(-u D)>llylill-iy where <Yij Ynm > is the ' - ii, , 

scalar product of the vectors Yij, Ynm, ]lYijll = <Yij, Yij exp (-uD)>. 

The vectors Yij (i = i, 2, j = i, 2 .... ) form a Hilbert space H with the scalar prod- 
uct 

((~I{~ ~,})' (~-lrt, ~2rrt)) = (,~lf, ~l~rt) -J- <~/--2j, ,Y-"2%> 

(Yij*, Y2j* are the vectors conjugate to Yij, Y2j). Since the vectors Yij are orthogonal on 

(0, 6) with the weight exp (-uD), we should taRe the following as the vectors conjugate to 
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Y~z, Y2z 

~-i~ = y,~ exp (-- u~) ( II f i l l  [! + ]1 '-~2111 )~--I (i = ~_, 2). 

By virtue of the orthogonality of the vectors Yij, the solution 0 = O(D) of operator 

(1.7) can always be broken down into a part belonging to the two-dimensional null-space of 
operator (1.8) and a part which is orthogonal toyz~*, Y2z*. 

We seek the solution of (1.7) in the form of series 

= ,~ ~ = ~ 

(e  = <(@, @), (Yzz ,  Y21) > is the amplitude). 

Substitution of (3.1) into (1.7) and identification of the terms with the powers of 
leads us to equations relative to s e 2- 

3F(0, o ) /~ee  1 = o; ( 3 . 2 )  

9s (0, 0)/8'0@2 + 2~hOZF (0, 0),,~| ~90~ + ~aF (0, 0)/802@~ ~ O. ( 3 . 3 )  

It follows directly from (3.2) that any linear combination e z = Yzz + ~Y2z can be a solution 
(~ is a parameter of the problem which is subject to determination). 

Equation (3.3) can be solved only when - in accordance with the Fredholm alternative 

for k = I, 2 - the conditions <8F(0, 0)/8@02, yk1*> = 0 are satisfied and, thus, 

(0, 0)/ O % (o, = ~1, ~ ~1, YaI> O. (3.4) 

Insertion of the expressions for ez, Yk1* (k = i, 2) into (3.4) leads to two conic 
equations in the (~z, ~) plane: 

gl(~l, *) = Cn~ 2 + C12~ + C13~1~ + Cl4~Z + C15 = 0; (3.5) 

Here, 

g2(~tl,  ~3) : C211D 2 --] c221D -~- c2.3[[11~ -~  024~1 -]-i- 6'25 : 0 .  

C,1 ( ,0 <a-F (0, 6-,2. : 0)/0~)'V21' Yll> ,  C12 <O'F(O,O)taO ~/llV21, ~/ii>~ 
c,3 = (a~F (O, o)/ao aLt-#~,, -y~1), c,, = (a~F (O, o)/ao a~,1, -~*~i>, 

e15 = 0,5<O'zF(O, 0)/0@~]1, "Yll>, C2[ : 0,5<O~F( 0, 0)/OOZe,, g*l>'. 

c~, = <a~F (0, O)laO2u~g,,, ygl), c~3 = < 02F (0, o)!ao o~G,i, "--~1 >' 
c,~ = <a2F (0, o)lae a!6 ; , ,  7~'i>, c:~ = o,5 <a~F (0, o ) /a -~L ,  -~, > 

(3 .6)  

Due to the orthogonalit [ of the vectors 911, Y21, Eq.(3.5) always describes a parabol a andEq.(3.6) 

always describes ahyperbola. The points of intersection of curves (3.5), (3.6) (~i(n), ~(n)) 
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are solutions of (3.3). There may be one, two, or three points of intersection in the re- 
gion of real values of ~z, 0 corresponding to the steady-state solutions. Thus, when Cop -z = 
i, kz = i, k= = 0, RT0cp(EQ) -z = 0.I, p = 0 (which gives b~ = 0.9, b= = 0.4), ~ = 2.50, ~z = 

0.i, u = i, curves (3.5), (3.6) intersect at one point (Dz(~), ~(~)) = (]..24, 2.40) (Fig. I), 

while then ~ = 2.49, ~z = I, u = 0.I, bz = 0.9, b 2 = 0.4 they intersect at three points 

( > z ( z ) ,  @(~)) = (1 .88 ,  4 . 0 5 ) ,  ( pz (= ) ,  ~(=))  = ( - 0 . 5 4 ,  - 1 . 2 0 ) ,  (Dz(a) ,  ~(~))  = ( - 0 . 3 5 ,  - 0 . 3 2 )  
(F ig .  2) .  S ince  c0,  p, kz,  k=, R, To, Cp, E, Q, p e n t e r  i n t o  ( 1 . 4 ) ,  ( 1 . 5 ) ,  ( 1 . 7 ) - ( 1 . 9 )  on ly  
t h rough  the  c o e f f i c i e n t s  b i ( i  = 1, 2 . . . .  ) ,  we w i l l  h e n c e f o r t h  p r e s e n t  on ly  the  v a l u e s  of  
these coefficients. 

Thus, in the plane (p, r the bifurcative solutions form the family of curves p = 

p~(n)s. Figure 3 (straight line i) shows the unique solution p = ~(m)r obtained when 6 = 
~/2, u = i, a~ = -0.5, b~ = 0.9, b 2 = 0.4. Here, it would be appropriate to remark once 
more that the possibility of the existence of from one to three solutions to the given prob- 
lem was proven by numerical methods for ~ (c, T) ~ c n in [i] and for autocatalytic reactions 
of the Langmuir-Hinshelwood type in [3]. 

To analyze the stability of solutions (1.7) at the points (~(n), ~(n)), it is neces- 
sary to represent the relations gi(~, ~) (i = i, 2) in the form of functions of the param- 
eter p. Combining (3.1), (3.5), and (3.6) and using the normalization condition ~ = i~ we 
obtain 

= ( i  = (3 .7 )  

System (3.7) can be regarded as two transformed ordinary differential equations. Thus, 
the stability of their solutions can be analyzed by a method based on the stability theorem 
corresponding to the first Liapunov approximation (see [7] as an example). In accordance 
with this method, solution (1.7) with conditions (1.4), (1.5) at the point (Dl(n), ~(n)) is 

stable if the eigenvalues sl (n), s2 (n) of the Jacobian matrix 

are negative. Considering that at each point we have detl = ~2detl (pl (n), ~(n)) + 0[D31, 
we can write the stability condition in the form 

max (~dnL >.~'~)) < O. (3 .8 )  

Condition (3.8) is valid only when curves (3.5) and (3.6) intersect transversely at the 

given point. The condition of transversality at the n-th point of intersection detI0(pl (n), 
o(n)) ~ 0. 

where 
l ag~ (tq, q;)/arq ag~(rq, ~)/a~' 

I~ = ag20q, ~)Lal-tl ag2 (,%, l]~)/a~ 

is evidence of bifurcation of the solution at this point. The bifurcation points form the 
subspace ~l(u, 6, ~i, b0, bl, b2) of the phase space of states of the reactor ~ = ~(u, 6, 
~i, b0, bl, b2) (the parameters in the parentheses are regarded as bifurcative parameters)~ 

If at the point of intersection of the conic sections there is a common tangent such 
that det I 0 = 0, then system (3.5), (3.6) will have one solution on one side of this point and 
three solutions on the other side. If the solution of (3.5), (3.6) is a point for which 
det I0 = 0, then there is yet one more solution with det I0 ~ 0. 

The transversality condition is satisfied for all points of intersection of the curves 
shown in Figs. 1 and 2 (as is evident from the figures themselves). An analysis of stabil- 

ity performed using (3.8) showed that for (pi(I), ~(i)) (Fig. i) (sl (I), s2(I)) = ~L(0.40, 

-0.72) and the solution is unstable on both sides of the critical point ~ = 0, while for 
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(31(I), r (31(2), ~(2)), (~1(s), ~(a)) (Fig. 2) the eigenvalues of the matrix I are as 

follows: (sl (I), s2 (I)) = >(1.26, -3.28), (sz (2), s2(2)) = ~(0.87, 0.27), (st(a), s2(3)) = 
~(0.38, -0.34). It follows from this that the solutions at the first and third points of 
intersection are unstable for any B, but the solution at the second point is stable at B < 
0 and unstable at B > O. 

Both Solutions are unstable if det I < 0 and are stable on one side of the point ~ = 0 
if det I > O. It must be noted in connection with this that two successive points of inter- 

section on one arc of the conic sections (3.5), (3.6) [such as (~z(=), ~(2)), (~z(3), ~(3)) 
in Fig. 2] have different signs for det I. This means that one solution is stable for any 
B, while the other is stable on one side of the point > = O. 

The equation (Bsl (n), >s2 (n)) = 0 represents a hyperplane which divides ~z into regions 
of stable and unstable bifurcative solutions. Thus, if we put u = i, az = -0.5, bz = 0.9, 
b= = 0.4 - ~ and reduce the subspace ~z to a two-dimensional subspace ~ = ~z(l; 6; -0.5; 
O; 0.9; 0.4 - ~), then the boundary delimiting the stable region above and below in the 
plane (6, $) will have the form shown in Fig. 4 (curve i). 

4. Isolated Solutions. The solution @ = 0 of the equation G(>, @, O) = 0 becomes un- 
stable with the passage of p through zero. In accordance with the Hopf theorem [5], it fol- 
lows from this that the point (p, 6) = (0, O) is a double point. To determine the stability 
of solution (i.9) with allowance for the defect b 0 # 0 which eliminates the bifurcation, we 
need to put b 0 = &(B, g). Then it follows from the condition <SG(O, O, O)/Sk, yk1*> (k = 
i, 2) that the steady-state solutions G(>, G, O) = O, branching at the double point (M, G) = 
(0, O) when A = O, become isolated solutions which eliminate the bifurcation when k # O. 

Double differentiation of G(>, G, A) with respect to ~, ~ at the point (~, ~) = (0, O) 
leads to the system of equations 

OG (0, O. O) a~ _, o~ (o. o. o) ,, oG (o, o. o) a~ = O; 
�9 ~ o~2 O0~_ @i q- &X aE a 

oG(O,O,O) 0 '0  O~-G(O.O.O) o~ ' OG(O,O.O) O2A ~_O,. 
oO ~op o~ + o~t cJ6) ' oA ot, t 08 " 

(4.1) 

( 4 . 2 )  

which can be solved only when the relations <@2@/3e2, yk1*> = <82G/3~SE, Yk1*> = 0 are sat- 
isfied for k = i, 2. The latter relations, together with (4.1), (4.2), ~ ~ke it possible to 
determine the first two nontrivialterms in the expansion of A(B, e) in powers of D, e: 

I [ (a2c(O'O'O)/aO2e~'~) e 2 2 ( a ~ ' c ( ~ 1 7 6 1 7 6  ( i t = l ,  2). (4 .3)  
A (~, ~) '2 <oc (o, o, o>/oA, VL> '+ (~,~ co, o O>~OA,-~:J 

Curves (4.3) represent isolated solutions which eliminate the bifurcation. Figure 3 (curves 
2) show such solutions obtained with 6 = 7/2, u = i, ~i = -0.5, b0 = i, b I = 0.9, b 2 = 0.4. 

Substitution of the expressions for 01 , Yk1*, k = i, 2 into (4.3) leads to two equa- 
tions for conic sections: 

g~ Q,,, ~) + bo (aC (0, O, o)/aA, y~,> = o; (4 .4)  
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g: (~1, ~) + bo <OC (0, O, O)lOA, 7~15 = O, ( 4 . 5 )  

where gi(~l, ~) (i = i, 2) is found from (3.5), (3.6). 

As (3.5) and (3.6), Eqs. (4.4), (4.5) can have one, two, or three solutions. However, 
the number of solutions of systems (4.4), (4.5) and (3.5), (3.6) does not have te coincide~ 

At 6 = 2.49, ~ = i, u = 0.I, b0 = i, bl = 0.9, b 2 = 0.4, curves (4.4), (4.5) intersect at 

three points (DI(I), ~(1)) = (2.98, 6.19), (~i (2), ~(2)) = (-1.43; -2.41), (~i(~), ~(3)) = 
(-1.31; -i.23). 

Equations (4.4), (4.5) are similar in structure to (3.5), (3.6). Thus, the stability 
of solution (1.9) at the points of intersection of curves (4.4), (4.5) is studied in the 
same manner as was done in Part 3 for the bifurcative solution. The results of calculations 

of the above solutions of (4.4), (4.5) gave (s! (i), s2(I)) = ~(3.55; -5.47), (si (2), s2 (2)) = 

D(1.68; 0.86), (si (s), s2 (3)) = ~(1.39; -0.79), from which it follows that the solutions of 

(1.9) are unstable at the points (~i (1), ~(i)), (Ui(3), ~(3)) on both sides of the point 

= 0, while they are stable at the point (~i(2), $(2)) when U < 0. 

Figure 4 (curve 2) shows the boundary between the regions of stability and instability 
of the solution which eliminates bifurcation in the two-dimensional subspace ~l = ~i(l; 6; 
-0.5; 1; 0.9; 0.4 - ~). 
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